Separating event-related BOLD components within trials: The partial-trial design revisited

نویسندگان

  • Hannes Ruge
  • Thomas Goschke
  • Todd S. Braver
چکیده

Many event-related fMRI designs involve multiple successive events occurring within a trial, spaced closely in time (e.g., in cued set-shifting paradigms). Yet, it is notoriously difficult to separate the activation components to these sequentially ordered events, given the long evolution time of the BOLD response. One approach to deal with this problem is to omit the second of two successive events (S1 and S2) in a certain proportion of 'partial S1-only' trials. The present article describes a novel method that extends the basic partial-trial design in several ways. As a central new feature it introduces two different delay intervals between S1 onset and S2 presentation, or, in case of S1-only trials, S2 omission. The analysis is based on three BOLD response regressors, one synchronized with S1 onset for short S1-S2 delay trials, another one synchronized with S1 onset for long S1-S2 delay trials, and a third synchronized with S2 onset. The two estimated S1-related activation time courses are then assessed by 'temporal profiling' based on the parameterization of onset latencies, peak latencies, and the area under the curves. Based on this information it is possible (1) to distinguish transient activity elicited with S1 onset from delay-related activity and (2) to identify the activation profile associated with possible 'nogo-type' activity caused by S2 omission. Despite these two new important possibilities, some caution is still advised when interpreting data from the proposed partial-trial design. Yet, in contrast to previous methods, it is possible to identify ambiguous data patterns and, by following an explicit decision scheme, to avoid erroneous conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating Processes within a Trial in Event-Related Functional MRI

m s T n w t K 1 p B Many cognitive processes occur on time scales that can significantly affect the shape of the blood oxygenation level-dependent (BOLD) response in eventrelated functional MRI. This shape can be estimated from event related designs, even if these processes occur in a fixed temporal sequence (J. M. Ollinger, G. L. Shulman, and M. Corbetta. 2001. NeuroImage 13: 210–217). Several...

متن کامل

Separating processes within a trial in event-related functional MRI I. The Method.

Many behavioral paradigms involve temporally overlapping sensory, cognitive, and motor components within a single trial. The complex interplay among these factors makes it desirable to separate the components of the total response without assumptions about shape of the underlying hemodynamic response. We present a method that does this. Four conditions were studied in four subjects to validate ...

متن کامل

Data-driven analysis of simultaneous EEG/fMRI using an ICA approach

Due to its millisecond-scale temporal resolution, EEG allows to assess neural correlates with precisely defined temporal relationship relative to a given event. This knowledge is generally lacking in data from functional magnetic resonance imaging (fMRI) which has a temporal resolution on the scale of seconds so that possibilities to combine the two modalities are sought. Previous applications ...

متن کامل

Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses

Use of multivoxel pattern analysis (MVPA) to predict the cognitive state of a subject during task performance has become a popular focus of fMRI studies. The input to these analyses consists of activation patterns corresponding to different tasks or stimulus types. These activation patterns are fairly straightforward to calculate for blocked trials or slow event-related designs, but for rapid e...

متن کامل

The mixed block/event-related design

Neuroimaging studies began using block design and event-related design experiments. While providing many insights into brain functions, these fMRI design types ignore components of the BOLD signal that can teach us additional elements. The development of the mixed block/event-related fMRI design allowed for a fuller characterization of nonlinear and time-sensitive neuronal responses: for exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 47 2  شماره 

صفحات  -

تاریخ انتشار 2009